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Quantum Energy-Transport and Drift-Diffusion
Models
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We show that Quantum Energy-Transport and Quantum Drift-Diffusion mod-
els can be derived through diffusion limits of a collisional Wigner equation.
The collision operator relaxes to an equilibrium defined through the entropy
minimization principle. Both models are shown to be entropic and exhibit
fluxes which are related with the state variables through spatially non-local
relations. Thanks to an –h expansion of these models, –h2 perturbations of the
Classical Energy-Transport and Drift-Diffusion models are found. In the Drift-
Diffusion case, the quantum correction is the Bohm potential and the model is
still entropic. In the Energy-Transport case however, the quantum correction is
a rather complex expression and the model cannot be proven entropic.

KEY WORDS: Wigner equation; entropy minimization; quantum BGK operator;
diffusion approximation.

1. INTRODUCTION

Classical Drift-Diffusion and Energy-Transport models have been invalu-
able tools for many years in various areas of physics and engineering.
They describe the transport of charged-species in strong interaction with a
surrounding medium. Such situations occur e.g. in semiconductors (where
electrons and holes are interacting with the crystal impurities and the pho-
nons) or in cold plasmas or gas discharges (where the electrons and the
ions are interacting with the surrounding neutral molecules).

Drift-Diffusion models have been used since the early days of sci-
entific computation (see e.g. refs. 54, 66, etc. for semiconductors and
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refs. 28, 64, etc. for plasmas and gas discharges). They consist of a mass
balance equation for the density of the conductive species, supplemented
with a constitutive equation for the mass flux describing the combined
effects of convection under the field and diffusion.

The Drift-Diffusion model assumes that the temperature of the
mobile species coincides with that of the surrounding medium. This is
sometimes too restrictive. The Energy-Transport model involves the tem-
perature of the mobile species as a variable of the problem in addition
to the density. The temperature evolves according to an energy balance
equation where the energy fluxes are defined by a similar constitutive rela-
tion as the mass flux. One can find an account of the recent theory of the
Energy-Transport model in ref. 46 in the context of semiconductors.

Classical Drift-Diffusion and Energy-Transport models can be derived
from microscopic transport models such as the Boltzmann equation. The
passage from the Boltzmann equation to these models, the so-called
“diffusion approximation”, heavily relies on the description of the inter-
actions between the mobile species and the surrounding medium at the
kinetic level by means of the collision operator. To carry the diffusion
approximation through, the collision operator must satisfy a certain num-
ber of properties, like e.g. space and time locality, the existence of colli-
sional invariants (conserved quantities during a collision) and equilibrium
states (the Maxwellians), entropy decay and invertibility in the orthogonal
direction to the equilibria.

Currently, the microelectronics industry produces highly miniaturized
devices with very small characteristic length scales. In such devices, quan-
tum effects become important and even, sometimes, predominant. A lot
of works are devoted to the numerical simulations of quantum transport
models in semiconductors (see e.g. refs. 22, 31, 32, 47, 56). Yet, most of
these authors do not attempt to adapt Drift-Diffusion and Energy-Trans-
port theories but rather, start from different models. It would seem more
efficient to use some adaptation of the former since the existing classical
codes could be used as starting bases.

However, this approach is seldom used (see however a quantum
version of the Drift-Diffusion model in refs. 2, 3), because it is extremely
difficult to perform the derivation of Drift-Diffusion models from the
kinetic level in a quantum setting. Indeed, this would require a quantum
theory of collisions. Such a theory is still at a rather early stage (see e.g.
refs. 4, 19, 29, 51, 63) and more recently refs. 6, 7, 33) and provides colli-
sion operators which do not have the properties required in the diffusion
approximation process.

The present work is an attempt to partly fill this gap, at least on
the formal level. It uses an earlier work(25,26) where quantum equilibria
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(or quantum Maxwellians) are defined as minimizers of the quantum
entropy, subject to local constraints of, say, given mass and energy. By
local constraints, we mean that we enforce, not only that the total num-
ber of particles and the total energy of the system is fixed, like in usual
quantum statistical mechanics approaches,(8) but that the local density and
energy at any given point x are given functions. The result of this con-
strained minimization problem is that the quantum Maxwellians depend
non-locally on the thermodynamic variables (i.e. the Lagrange multipliers
of the constraints).

Thanks to the definition of these quantum equilibria, it was possible
in ref. 27 to generalize the expression of the collision operators of clas-
sical kinetic theory to quantum ones. These operators display the same
properties as the classical ones, but for the fact that the equilibria are
quantum ones and that they decrease the quantum entropy. In the pres-
ent work, we introduce simpler operators, of relaxation type (also called
‘BGK’ operators in the classical framework) which allow more explicit
computations than the operators of ref. 27. One of the tasks we shall ful-
fill is to prove that these operators have the necessary properties for the
diffusion approximation to work. The rationale for the use of these simpli-
fied operators stems from the analogy with the classical case, where they
have been proved to be in a reasonable sense a valuable alternative to the
much more complex Boltzmann operator(20).

After the definition of these quantum BGK operator, we follow
the standard route defined by the diffusion approximation methodology.
Since macroscopic models of Drift-Diffusion or Energy-Transport types
are expected to be valid at large scales, we perform a diffusion scaling
of the quantum kinetic equation (or Wigner equation). The Quantum
Drift-Diffusion and Quantum Energy-Transport models appear at the
leading order when we let the scale ratio (often called the Knudsen num-
ber in gas dynamics) tend to zero. They differ from their classical coun-
terpart in that the dependence of the (mass and energy) fluxes upon the
density and temperature is non-local in space. This is the signature of
the non-local dependence of the quantum Maxwellian upon its thermody-
namic parameters. An important property is that the entropy decays along
any solution of these models. Of course, this property originates from the
definition of the quantum Maxwellians through the entropy minimization
principle.

In an attempt to find more explicit flux expressions, we study their
expansion in powers of the parameter –h (this parameter should be viewed
as a scaled dimensionless version of the Planck constant –h). Of course, at
leading order when –h→0, we recover the classical models. More interest-
ing is the first order correction, of order –h2.
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In the case of the Drift-Diffusion model, this correction is shown
to involve the so-called Bohm potential, which occurs in many quantum
hydrodynamics(38,39,43) and quantum drift-diffusion(2,3) theories. Conse-
quently, this paper gives a way to derive this Quantum Drift-Diffusion
model from first principles. We can also show that the Classical Drift-
Diffusion model corrected with the Bohm potential remains entropic. To
our knowledge, the proof of this property is new. Other mathematical
properties and numerical simulations of this model can be found in ref. 17,
61, 62.

In the case of the Energy-Transport model however, the correction to
the classical model seems too complex for practical purposes and addition-
ally, we were unsuccessful in trying to prove the entropy property. In the
case where we can neglect the temperature gradients compared with the
density gradients, the model simplifies slightly.

We conclude this introduction by a few other bibliographical notes.
The first macroscopic quantum models that have been derived were of
hydrodynamic nature (the difference between hydrodynamic like and diffu-
sion like models will be summarized in section 5.1). The reader will find
in refs. 30, 35, 40, 43 a sample of recent works on quantum hydrodynamic
models. The entropy minimization principle which is the core of the pres-
ent work has previously been used to derive quantum hydrodynamic mod-
els in refs. 25 and 26. A different, but related approach, can be found in
refs. 52, 55, 68. All these approaches rely on methods which, in the clas-
sical setting, have been developped in refs. 50, 57.

The diffusion approximation procedure has first been developped in
the context of neutron transport (see e.g. refs. 48, 18, 11) and radiative
transfer(9,10). Its first application to semiconductors and the rigorous der-
ivation of the Classical Drift-Diffusion model is found in refs. 41, 60. The
Classical Energy-Transport model appears in the early work(67). Its first
derivation from the semiconductor Boltzmann equation is due to ref. 15
and ref. 13 (see also the ref. 21). It has been analyzed in refs. 23, 24.

The outline of the paper is as follows. In Section 2, we present the
starting point of our analysis: the Wigner-BGK model. Then, in Section
3, the diffusion limit leading to the Quantum Energy-Transport model is
performed. Section 4 summarizes the same programme for the Quantum
Drift-Diffusion model. In Section 5, expansions of the so-obtained models
in powers of –h are developped. A conclusion is drawn in Section 6 and an
appendix collects some useful technical formulae.

Future developments of this work will involve both theoretical inves-
tigations (proof of well-posedness, stability, etc.), and numerical ones
(simulation of a resonant tunneling diode, for instance). Among the
questions which remains to be solved are the establishment of correct
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boundary conditions for the Quantum Energy-Transport and Quantum
Drift-Diffusion models. This implies setting up an entropy minimization
problem on a bounded domain with boundary conditions. This question
is under investigation in a future work (Gallego and Mishats, submit-
ted)(34). In particular, the treatment of open boundary conditions for the
Schrödinger equation has been investigated in refs. 49, 5, 16, 12, 14, 59
Ben Abdallah et al., submitted. Its adaptation to the present framework
is in progress.

2. THE WIGNER-BGK MODEL

A quantum particle system can be described by its density operator ρ,
which is a positive, hermitian, trace-class operator on a Hilbert space X . If
the system consists of a single particle in R

d (d=1,2,3 in practice), sub-
ject to a given external potential V (x, t), we have X =L2(Rd), the space of
square integrable functions on R

d . In this case, the density operator satis-
fies the quantum Liouville equation

i–h∂tρ= [H, ρ] , (2.1)

where H is the particle Hamiltonian

H=−
–h2

2
�+V (2.2)

and [H, ρ]=Hρ−ρH is the commutator of H and ρ. In all this work, we
assume that the particle mass is constant and equal to unity.

We shall be concerned with many-particle systems. Our initial postu-
late is that the system can be modeled by a single-particle density operator
ρ satisfying a modified Liouville equation

i–h∂tρ= [H, ρ]+ i–hQ(ρ) , (2.3)

where the potential V in the Hamiltonian H can be either an external
potential or a mean-field like potential and Q(ρ) is a collision opera-
tor describing the mutual interactions between the particles themselves
or between the particles and the surrounding environment. In this sense,
(2.3) is an equivalent of the classical Vlasov–Poisson–Boltzmann equa-
tion which describes semi-classical charged-particle transport in plasmas or
semiconductors for instance.

We shall not dwell on what precise form the potential V should take
because the forthcoming developments will be independent of it. On the
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other hand, the precise form of the collision operator matters. In this
paper, we shall use our previous works(25) (see also refs. 26 and 27). In
ref. 25 we propose to define quantum local equilibria (or quantum Max-
wellians) as minimizers of the quantum entropy functional, subject to
given local moment constraints (such as local density, momentum and
energy). As opposed to global equilibria, whose definitions are standard
(see e.g. ref. 8), these quantum Maxwellians depend on the position vari-
able x through their (non-local) relation to the given moment constraints.
In ref. 27, we use these quantum Maxwellians to extend the expression of
the classical Boltzmann collision operator to the quantum case.

In this paper, we shall consider a simpler collision operator of BGK
type. Classical BGK operators provide a simple relaxation model with
similar features as the Boltzmann operator (e.g. local conservation of
mass, momentum and energy, entropy decay, etc.). In the present paper,
we shall provide an extension of the BGK operator to quantum systems.
For the purpose of our present developments, we shall restrict to imposing
mass and energy conservation.

It is convenient to introduce the Wigner transform of the density matrix
ρ. The Wigner transform maps operators on L2(Rd) to symbols, i.e. functions
of the classical position and momentum variables (x,p)∈R

2d . More precisely,
let us define the integral kernel of the operator ρ to be the distribution ρ(x, x′)
such that ρ operates on any function ψ(x)∈L2(Rd) as follows:

ρψ(x)=
∫
ρ(x, x′)ψ(x′) dx′.

The kernel ρ(x, x′) can always be defined in the distributional sense. Then,
the Wigner transform W [ρ](x,p) is defined by:

W [ρ](x,p)=
∫

Rd

ρ

(
x− 1

2
η, x+ 1

2
η

)
eiη·p/–h dη.

We shall denote by h(x,p)=W [H] the Wigner transform of the Hamilto-
nian (2.2), i.e.

h(x,p)= |p|2
2

+V (x, t), (2.4)

which is nothing but the classical Hamiltonian.
The Wigner transform is an isometry between the operator space

L2 ={ρ |Tr {ρρ†}<∞}, (where Tr is the operator trace and ρ† is the hermi-
tian adjoint of ρ), and the space L2(R2d). Indeed, as an easy consequence
of Plancherel’s identity, we have, for two operators ρ and σ in L2:
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Tr {ρσ †}=
∫
W [ρ]W [σ ]

dx dp

(2π–h)d
, (2.5)

where the bar means complex conjugation. Therefore, the Wigner trans-
form can be inverted and its inverse, also referred to as the Weyl quantiza-
tion, is defined for any function f (x,p) as the operator acting on ψ(x)∈
L2(Rd) as:

W−1[f ]ψ(x)= (2π–h)−d
∫

R2d
f

(
x+y

2
, p

)
ψ(y) eip·(x−y)/–h dp dy. (2.6)

The Wigner transform f (x,p) of the density matrix ρ can be viewed
as a quantum extension of the classical phase-space Boltzmann distribu-
tion function. Note that however f (x,p) is not a positive function, despite
the fact that ρ is a positive operator (although f is a real number since
ρ is a hermitian operator). Taking the Wigner transform of the collisional
Liouville equation (2.3), we find the collisional Wigner equation:

∂tf +p ·∇xf −�[V ]f =Q(f ), (2.7)

where �[V ] is the operator

�[V ]f = i
(2π)d

∫
R2d

V (t, x+ –h
2 η)−V (t, x− –h

2 η)

–h
f (x,p′) ei(p−p′)·η dη dp′

(2.8)

and Q(f ) is the Wigner transform of the collision operator Q(ρ). In the
semi-classical limit –h→0, �[V ]f converges to the usual operator ∇xV ·∇pf .
Now our next task is to specify Q(f ).

We define the local moments of ρ (such as the local mass, momen-
tum and energy) like in the classical case as the moments of f . Therefore,
the local density n=n(x), mean velocity u(x, t) and energy W =W(x) are
defined by


n(x)nu(x)

2W(x)


=

∫
f (x,p)


 1
p

|p|2


 dp

(2π–h)d
. (2.9)

In this introduction, we omit the possible dependence upon time. Note
that n is rather the density normalized by the total number of particles
since

∫
ndx=Tr ρ= 1.
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The quantum entropy is defined globally for the entire system as

H [ρ]=Tr {ρ(ln ρ−1)}, (2.10)

where lnρ is the operator logarithm of ρ (i.e. if ρ has eigenvalues ρs , then
lnρ has eigenvalues lnρs in the same basis). Note that, contrary to the
classical case, the quantum entropy is defined globally (i.e. is integrated
over the space variable). In refs. 25 and 26, we introduced the concept of
local equilibrium (or quantum Maxwellian) as a minimizer of the follow-
ing constrained problem: (n(x),W(x)) being given, find the minimum of
the quantum entropy subject to the constraint that the local density and
energy are given by n and W , i.e. find

min
{
H [ρ] |

∫
W [ρ](x,p)

(
1
|p|2

)
dp

(2π–h)d
=
(
n(x)

2W(x)

)
∀x ∈R

d

}
.

(2.11)

In ref. 26, it is (formally) shown that this minimization problem has
a solution given by

ρa,c= exp(W−1(a(x)+ c(x)|p|2)) , (2.12)

where (a(x), c(x)) are such that

∫
W [ρa,c](x,p)

(
1
|p|2

)
dp

(2π–h)d
=
(
n(x)

2W(x)

)
∀x ∈R

d .

In (2.12), exp refers to the operator exponential, defined in a similar way
as the operator logarithm. In the forthcoming developments, we shall write

fa,c=W [ρa,c](x,p)=Exp (a(x)+ c(x)|p|2), (2.13)

where the ‘quantum exponential’ Exp is defined, for any symbol f (x,p)
by:

Expf =W [exp(W−1(f ))].

Note that, in (2.13), the functions a and c are to be sought in a class of
functions in which the exponential is defined and is a trace-class opera-
tor. Determining which classes of functions answer this question is a diffi-
cult and still open problem. However, a first step in this direction has been
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made in refs. 34 (Gallego and Méhats submitted), for a discretized version
of the problem. In a similar way, we define the ‘quantum logarithm’ Ln
by

Lnf =W [ln (W−1(f ))].

We note that, in view of (2.5) and (2.10), we can write:

H [ρ]=
∫
f (Lnf −1)

dx dp

(2π–h)d
,

where f =W [ρ].
Now, for given f (x,p), we define Mf as the quantum Maxwellian

which has the same moments as f , i.e.

Mf =Exp (a+ c|p|2) such that
∫
(Mf −f )

(
1
|p|2

)
dp=0.

Throughout this paper, we shall suppose that the two integral con-
straints fix the two functions a and c in a unique way. Proving this fact is
a mathematically challenging problem. However, it can be proved for the
discrete case (see ref. 34 Gallego and Méhats, submitted) and the extension
of the proof to the continuous setting in under investigation.

The uniqueness of a and c implies that MMf
=Mf , i.e. the mapping

f →Mf is a (nonlinear) projector. Then, we define the collision operator
as

Q(f )=Mf −f. (2.14)

This collision operator models the interaction of the particle system
with a background. The interaction leaves the local number and energy of
the particles unchanged and relaxes the distribution towards the quantum
Maxwellian Mf . In classical semiconductor kinetic theory, such operators
model the combination of electron-phonon scattering (in its elastic limit)
and electron–electron scattering (see e.g. refs. 21. 15, 13 for a discussion
of this point).

Before going further, we can note the following formal properties of
the Wigner-BGK model:
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Lemma 2.1 (Formal). Let f (t) be the solution of (2.7), (2.14), if it
exists, and let fI =f |t=0 . (i) If

∫
fI

dx dp

(2π–h)d
=Tr

{
W−1(fI )

}
=1,

then, for all time t >0, we have

∫
f (t, x,p)

dx dp

(2π–h)d
=Tr

{
W−1(f (t))

}
=1.

(ii) If fI is positive (in the sense of operators, i.e. ρI =W−1(fI ) is a posi-
tive operator), then, for all time t >0, f (t) remains positive in this sense.

Proof. Since, by construction, for all f we have

∫
Q(f )

dx dp

(2π–h)d
=0,

item (i) stems directly from an integration of (2.7), thanks to the useful
identity (3.33) written further. The second point can be more easily seen
with the collisional quantum Liouville equation (2.3) satisfied by ρ(t)=
W−1(f (t)). With our choice of a BGK collision operator, this equation
takes the form:

∂tρ=− i
–h

[H, ρ]+W−1(Mf )−ρ . (2.15)

Assuming that it exists, we denote by U(t, s) the two-parameter family of
unitary operators generated by − i

–hH(t), which is such that

∀ψ ∈L2(Rd)
d

dt
U(t, s)ψ=− i

–h
H(t)U(t, s)ψ, U(s, s)ψ=ψ .

Let σ(t)=U(−t,0) et ρ(t)U(t,0). Direct calculations show that this self-
adjoint operator σ solves

∂tσ =U(−t,0) et W−1(Mf )U(t,0), σ (0)=ρ(0). (2.16)

Since the source term in (2.15) takes the form

W−1(Mf )= exp(W−1(a+ c|p|2)),
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it is clearly a positive operator and it is readily seen that U(−t,0) et W−1

(Mf )U(t,0) is also a positive operator. Hence, ρ(0) being positive, (2.16)
implies that σ(t) is positive, as for ρ(t).

In the present paper, we are interested in the large-scale dynamics
of the Wigner-Boltzmann equation (2.7) with collision operator (2.14).
Unlike(25), where the right scaling was a hydrodynamic one, the relevant
scaling here is of diffusion type. This is related with the fact that we
enforce only two moment constraints related with mass and energy con-
servation and that we do not enforce momentum conservation. Therefore,
we introduce the following changes of variables

t ′ = εt , Q′ = εQ, (2.17)

and get the rescaled Wigner equation (omitting the primes for simplicity):

ε2∂tf
ε+ ε(p ·∇xf ε−�[V ]f ε)=Q(f ε). (2.18)

An estimate of the dimensionless parameter ε can be found from the
value µ of the mobility of the material. From it, the mean collision time
is τ = q−1mµ∼ 10−12s, where m is the electron effective mass and q the
elementary charge. Then ε2 = τ/τQ, where τQ is an estimate of the typical
time of quantum phenomena. Such a time can be, for instance, a typical
life-time of a resonant level in an open device and can be larger than τ be
several orders of magnitude.

We are interested in the limit ε→0 of the present equation, provided
an initial datum f |t=0 =fI is given. This limit is discussed in the next sec-
tion.

3. DERIVATION OF THE QUANTUM ENERGY-TRANSPORT MODEL

3.1. Statement of the Result

The goal of this section is to prove the following:

Theorem 3.1 (Formal). Let f ε be the solution of the Wigner-BGK
equation (2.18). Then, formally, f ε →f as ε→ 0, where f is a quantum
Maxwellian f = Exp (A+ C|p|2) and (A,C)= (A(x, t),C(x, t)) are solu-
tions of

∂t

∫
Exp (A+C|p|2)

(
1

|p|2
)
dp

−
∫

T 2Exp (A+C|p|2)
(

1
|p|2

)
dp=0, (3.1)
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and T is the quantum transport operator:

T f = (p ·∇x −�[V ])f . (3.2)

We can write the Energy-Transport model in a slightly more explicit
form. First, we introduce some new notations. For any pair of function
(A(t, x),C(t, x)), the particle and energy densities n[A,C] and W [A,C]
associated with A and C and which depend nonlinearly and functionally
on them are defined by

(
n[A,C]
W [A,C]

)
=
∫

Rd

(
1

|p|2/2
)

Exp (A+C|p|2) dp

(2π–h)d
. (3.3)

We also introduce �[A,C] (pressure tensor) and Q[A,C] (heat flux tensor)
according to:

�[A,C]=
∫

Rd

p⊗p Exp (A+C|p|2) dp

(2π–h)d
, (3.4)

Q[A,C]=
∫

Rd

|p|2
2
p⊗p Exp (A+C|p|2) dp

(2π–h)d
. (3.5)

Now, we state:

Proposition 3.2. The Quantum Energy-Transport model (3.1) can
be equivalently written:

∂tn+∇ ·J n=0 , (3.6)

∂tW +∇ ·Jw+J n ·∇xV =0 , (3.7)

where the mass and energy fluxes J n and Jw are given by

J n=−∇ ·�−n∇V , (3.8)

Jw=−∇ ·Q−W ∇V −�∇V +
–h2

8
n∇x�xV . (3.9)

where n, W , J n, Jw are nonlinear functionals of A and C through (3.3)–
(3.5).

The Quantum Energy-Transport system can be viewed equivalently as
an evolution system for (A,C) or for (n,W) (through the inversion of
the non-local relation (3.3)). The relations between (�,Q) and (A,C) or
(n,W) are non-local in space as well. This model appears as a system
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of two conservation equations (3.6) and (3.7) for the local density n and
energy W . The density and energy fluxes J n and Jw are given in terms
of n and W through the constitutive relations (3.8) and (3.9). The con-
servation equations (3.6) and (3.7) are identical with those involved in the
Classical Energy-Transport model(21,15,13). At variance, the flux relations
(3.8) and (3.9) are significantly different in several aspects which we detail
below.

First, the relation between (J n, Jw) and (n,W) is non-local in space,
through the non-local dependence of � and Q upon (n,W). In the Clas-
sical Energy-Transport model, the fluxes are local (linear) combinations of
the first-order gradients of (n,W). Therefore, the Quantum Energy-Trans-
port model involves a complete delocalization of the expressions of the
fluxes.

Second, the tensors � and Q are not diagonal in general. In the clas-
sical case, � and Q are diagonal thanks to the fact that the classical Max-
wellian is an even function of each component pi of p separately. In the
quantum case, parity w.r.t. each component pi of p separately is not pre-
served by quantum exponentiation (although the parity with respect to p

itself is preserved). It follows that, in general, Exp (A+C|p|2) is not an
even function of each component of p separately (although A+C|p|2 is,
and although Exp (A+C|p|2) is an even function of p as a whole).

Now, we discuss an important property satisfied by the Quantum
Energy-Transport model (3.1): entropy dissipation. More precisely, let us
define the quantum fluid entropy of the system as in ref. 25. Based on an
analogy with the Boltzmann entropy f (ln f −1), it is written

S(n,W) =
∫
f0(Ln (f0)−1)

dp dx

(2π–h)d

=
∫
(A+C|p|2 −1)Exp (A+C|p|2) dp dx

(2π–h)d

=
∫
(An+2CW −n) dx , (3.10)

where (A,C) and (n,W) are related through (3.3) and f0 = Exp (A +
C|p|2). In ref. 25, it was proved that S is a strictly convex functional of
(n,W). Then, we have:

Proposition 3.3. Let (A,C) or (n,W) solve the Quantum Energy-
Transport system (3.1). Then the quantum fluid entropy S(n,W) is a
decreasing function of time:

d

dt
S(n,W)�0. (3.11)
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Theorem 3.1 and Propositions 3.2 and 3.3 rely on the properties of
the collision operator Q, which are collected in the following:

Lemma 3.4. The collision operator Q(f ) given by (2.14) has the
following properties:

(i) Null space:

Q(f )=0 ⇐⇒ ∃(A(x, t),C(x, t)) such that f =Mf =Exp (A+C|p|2).
(3.12)

(ii) Collisional invariants: For all f , we have:

∫
Q(f )

(
1
|p|2

)
dp=0. (3.13)

(iii) Quantum entropy decay: for all f , we have:

∫
Q(f )Lnf dx dp�0 , (3.14)

with equality if and only if f =Mf .

We shall also need the following intermediate results:

Lemma 3.5. For all f , we have:

∫
�(f )


1
p

|p|2


 dp

(2π–h)d
=

 0

−n∇xV
−2nu ·∇xV


 , (3.15)

where n and u are given by (2.9). Moreover, we have:

∫ |p|2
2
p �[V ]f

dp

(2π–h)d
=−(W Id+P)∇xV +

–h2

8
n∇x�xV , (3.16)

where Id is the identity tensor, W is defined by (2.9) and

P=
∫

Rd

p⊗p f dp

(2π–h)d
,

is the pressure tensor.
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Lemma 3.6. Let ρ = W−1[f ] be a hermitian operator associated
with the real-valued symbol f (x,p) and with integral kernel ρ(x, y). Then,
we have

f even w.r.t. p ⇐⇒ ρ symmetric (or real-valued),

f odd w.r.t. p ⇐⇒ ρ anti-symmetric (or pure imaginary),

and

f even w.r.t. p �⇒ Expf even w.r.t. p .

Finally, we recall the following lemma, which was proved in refs. 58,
25:

Lemma 3.7. Let g be a strictly increasing continuously differentia-
ble function defined on R+. Consider that the function

G(ρ)=Tr{g(ρ)}, (3.17)

is defined on the space of trace-class positive self-adjoint operators ρ.
Then G is Gâteaux differentiable and its Gâteaux derivative δG/δρ is
given by:

δG

δρ
δρ=Tr{g′(ρ)δρ}. (3.18)

We note an immediate corollary of this lemma:

Lemma 3.8. Suppose that ρ = ρ(s) is a continuously differentiable
function of the real variable s. Then, G(ρ(s)) with G defined by (3.17) is
a continously differentiable function from R to R and

d

ds
G(ρ(s))=Tr{g′(ρ(s))

dρ

ds
} , (3.19)

The proofs of the main results (Theorem 3.1 and Propositions 3.2
and 3.3) are given in the next section. The proof of the auxilliary lemmas
(Lemmas 3.4, 3.5 and 3.6) are deferred to a forthcoming section.
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3.2. Proofs of the Main Results

Proof of Theorem 3.1. We assume that f ε→f0 as ε→0 and that
the convergence holds in a space of smooth functions (in this work, we
shall stay at the formal level). We rewrite (2.18) shortly:

ε2∂tf
ε+ εT f ε=Q(f ε). (3.20)

Then, at leading order, (3.20) implies that Q(f0)= 0. Thus, using (3.12),
we deduce that there exists (A(x, t),C(x, t)), such that

f0 =Exp (A+C|p|2) . (3.21)

Now, we introduce the following (Chapman–Enskog) expansion:

f ε=Mf ε + εf ε1 , (3.22)

thus defining f ε1 . Then, clearly:

1
ε
Q(f ε)=−f ε1 .

Inserting this expression into (3.20), we get:

f ε1 =−T f ε+ ε∂tf ε . (3.23)

Therefore, as ε→0, f ε1 →f1 such that

f1 =−T f0 . (3.24)

Next, multipliying (3.20) and using the conservation properties (3.13),
we get:

∂t

∫
f ε

(
1

|p|2
)
dp+ 1

ε

∫
T f ε

(
1

|p|2
)
dp=0. (3.25)

Now, using (3.22), we have

T f ε=T Mf ε + εT f ε1 . (3.26)
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Let (Aε(x, t),Cε(x, t)) be such that Mf ε =Exp (Aε +Cε|p|2). Since, Aε +
Cε|p|2 is an even function of p, thanks to Lemma 3.6, Mf ε is even w.r.t.
p, and so, T Mf ε is odd w.r.t. p (one can see from (2.8) that if f is even
then �f is odd). It follows that

∫
T Mf ε

(
1

|p|2
)
dp=0 . (3.27)

Therefore, from (3.25)–(3.27), we deduce that:

∂t

∫
f ε

(
1

|p|2
)
dp+

∫
T f ε1

(
1

|p|2
)
dp=0 .

Taking the limit ε→0 gives

∂t

∫
f0

(
1

|p|2
)
dp+

∫
T f1

(
1

|p|2
)
dp=0 . (3.28)

Inserting the expressions of f0 and f1 (Eqs. (3.21) and (3.24)) into (3.28)
leads to (3.1), which ends the proof.

Proof of Proposition 3.2. Going back to (3.28), we use the expres-
sion of T and Lemma 3.5 to write:

∫
T f1

(
1

|p|2
)
dp=∇x ·

∫
pf1

(
1

|p|2
)
dp+

∫
f1

(
0

2p

)
dp ·∇xV .

(3.29)

We define

(
J n

Jw

)
=
∫ (

1
|p|2/2

)
pf1

dp

(2π–h)d
. (3.30)

Then, system (3.6) and (3.7) is nothing but (3.28) written using these nota-
tions. Now, inserting (3.24) into (3.30) and using again Lemma 3.5 leads
to (3.8) and (3.9).

Proof of Proposition 3.3. We multiply (3.20) by Ln (f ε) and inte-
grate with respect to x and p:

∫
(Lnf ε)∂tf ε dx dp+ ε−1

∫
(Lnf ε)T f ε dx dp= ε−2

∫
(Lnf ε)Q(f ε) dx dp.
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Writing ρε=W−1[f ε] and using Lemma 3.8, we remark that

d

dt

∫
f ε(Lnf ε−1)

dp dx

(2π–h)d
= d

dt
Tr
(
ρε(lnρε− Id)

)

= Tr
(
lnρε∂tρε

)

=
∫
(Lnf ε)∂tf ε

dp dx

(2π–h)d
.

We also note that

−i–h
∫
(Lnf ε)T f ε dp dx

(2π–h)d
=
∫
(Lnf ε)W

(
Hρε−ρεH) dp dx

(2π–h)d

= Tr
{
(lnρε) [Hρε−ρεH]

}
= Tr

{
H [ρε(lnρε)− (lnρε)ρε]}

= 0 ,

where we used the cyclicity of the trace (i.e. Tr{ρ1, . . . , ρn} is invariant
under cyclic permutations of {ρ1, . . . , ρn}), and the fact that any function
of ρ commutes with ρ. Now, from (3.14), we deduce that

d

dt

∫
f ε(Lnf ε−1) dx dp�0.

To complete the proof, we pass to the limit ε→0. This ends the proof
of the proposition since f ε converges to f0 =Exp (A+C|p|2), where (A,C)
is the solution of the Quantum Energy-Transport model.

3.3. Proofs of the Auxiliary Lemmas

Proof of Lemma 3.4. Properties (i) and (ii) are obvious. The only
property to be proved is (iii) (entropy decay).

Let f be a given distribution function. Then, we can write Mf =
W [ρ] where ρ is the solution of the minimization problem (2.11), in which
(n,W) are the moments of f given by (2.9). From ref. 25 and Lemma 3.7,
we know that ρ→H [ρ] is convex and that its derivative is written

DHρ0(ρ)=Tr (ln (ρ0) ρ) .

Let us now introduce the function


 : λ∈ [0,1] 
→ H
(
W−1((1−λ)Mf +λf )

)
.
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By the chain rule, this function is differentiable and we have

d


dλ
(λ) = Tr

(
ln (W−1((1−λ)Mf +λf ))W−1(f −Mf )

)

=
∫

Ln ((1−λ)Mf +λf ) (f −Mf )
dp dx

(2π–h)d
.

Moreover, the convexity of H implies that 
 is also convex. Thus we have

d


dλ
(1)�
(1)−
(0),

which can also be written

∫
Ln (f ) (f −Mf )

dp dx

(2π–h)d
�H(f )−H(Mf )�0 , (3.31)

since Mf is a minimizer.
Now, the left-hand side of (3.31) vanishes identically if and only if

H(f ) = H(Mf ) which is equivalent to saying that f = Mf since we
assumed that the minimizer Mf is unique. This ends the proof of (iii)
and of Lemma 3.4.

Proof of Lemma 3.5. Denoting the Fourier transform with respect
to the p-variable by ·̂, the operator �[V ] is such that

�̂[V ]f = i
V (t, x+ –h

2 η)−V (t, x− –h
2 η)

–h
f̂ (t, x, η). (3.32)

Therefore, for smooth enough functions V and f decaying fast enough at
infinity, we have the following useful identities:

∫
Rd

�[V ]f dp = (2π)d �̂[V ]f (t, x,0)=0, (3.33)
∫

Rd

p�[V ]f dp = i(2π)d ∇η �̂[V ]f (t, x,0)

= −(2π)d∇xV (t, x) · f̂ (t, x,0) (3.34)

= −∇xV ·
∫

Rd

f dp,
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∫
Rd

|p|2
2
�[V ]f dp =−1

2
(2π)d �η �̂[V ]f (t, x,0)

=−i (2π)d∇xV (t, x) ·∇ηf̂ (t, x,0)
=−∇xV ·

∫
Rd

pf dp

(3.35)

and some straightforward calculations lead to (3.16). This concludes the
proof of Lemma 3.5.

Proof of Lemma 3.6. The first two statements obviously follow
from a change p→−p in (2.6). We now prove that the parity is preserved
in taking the quantum exponential. Let ρ be the integral kernel of W−1f

and suppose that ρ is real-valued. Then, the integral kernel of ρ2 is

ρ2(x, y)=
∫
ρ(x, z)ρ(z, y) dz,

and is also real-valued. Similarly, by induction, the integral kernel of any
power of ρ is real valued. Therefore, expρ being the sum of a series of
powers of ρ, its integral kernel is also real valued, from which we conclude
that Exp f is even w.r.t. p.

4. DERIVATION OF THE QUANTUM DRIFT-DIFFUSION MODEL

This section is devoted to the derivation of the Quantum Drift-
Diffusion model. The Quantum Drift-Diffusion model describes the long
term behaviour of a quantum system interacting with a thermal bath at
a given temperature. Therefore, the energy of the quantum system is not
locally (neither globally) conserved. The resulting model consists of a sin-
gle conservation equation for the particle density only, with an instanta-
neous (but non-local in space) relation between the particle current and
the density. By contrast, in the Quantum Energy-Transport model, the
energy is locally conserved, which implies that the temperature evolves
according to the energy balance equation. The resulting model, as we have
seen in the previous section, is a system of conservation equations for the
density and the energy.

The starting point for the derivation of the Quantum Drift-Diffusion
model is again the quantum Boltzmann equation (2.18), but with a differ-
ent collision operator, which we are now going to introduce.

First, we introduce the convenient entropy concept for systems inter-
acting with a thermal bath at a given temperature T0. This is the so-called
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relative entropy, given by:

H̃ [ρ] =
∫
f (Lnf −1+ h(x,p)

T0
)
dx dp

(2π–h)d
,

= Tr{ρ(lnρ−1+ H
T0
)}, (4.1)

with f =W [ρ]. We recall the H is the quantum Hamiltonian (2.2) and h

its symbol (2.4).
Now, we consider the problem of minimizing H̃ under the constraint

of given density. More precisely, given a density function n(x), we consider
the problem:

min {H̃ [ρ] |
∫
W [ρ](x,p)

dp

(2π–h)d
=n(x) ∀x ∈R

d }. (4.2)

Assuming that this minimization problem has a solution, this solution
is given by ρ̃ã =W−1[f̃ã ] with

f̃ã =Exp
(
ã(x)− h(x,p)

T0

)
,

where ã(x) is such that

∫
f̃ã(x,p)

dp

(2π–h)d
=n(x) ∀x ∈R

d .

Now, with (2.4) we can write

f̃ã =Exp

(
ã(x)− V (x)

T0
− |p|2

2T0

)
=Exp

(
a(x)− |p|2

2T0

)
,

with a= ã−V/T0. We shall denote

fa =Exp

(
a(x)− |p|2

2T0

)
, ρa =W−1[fa ], (4.3)

the equilibria of this problem.
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Now, for given f (x,p), we define M̃f as the quantum maxwellian
(4.3) which has the same density as f , i.e.

M̃f =Exp

(
a− |p|2

2T0

)
such that

∫
(M̃f −f ) dp=0.

We shall suppose that the integral constraint fixes the function a in a
unique way. Then, we define the collision operator as

Q̃(f )=M̃f −f. (4.4)

This collision operator models the interaction of the particle system
with a background of fixed temperature T0. The interaction leaves the
local number of particles unchanged and relaxes the distribution towards
the quantum Maxwellian M̃f . In classical semiconductor kinetic theory,
this operator would model electron–phonon scattering (without taking the
elastic limit) while electron-electron scattering is neglected(13,15,21). (refer
to the end of Section 2 for a comparison with the Energy-Transport case).

In this section, we shall perform a diffusion approximation of the
Wigner-BGK equation (3.20), i.e.

ε2∂tf
ε+ εT f ε= Q̃(f ε). (4.5)

where now, the BGK-like collision operator Q̃ is given by (4.4). We
only state the results: the proofs are very similar to those concerning the
Energy-Transport model.

Theorem 4.1 (Formal). Let f ε be the solution of the Wigner-BGK
equation (4.5). Then, formally, f ε → f as ε→ 0, where f is a quantum
Maxwellian f =Exp (A−|p|2/(2T0)) and A=A(x, t) is a solution of

∂t

∫
Exp

(
A(x)− |p|2

2T0

)
dp−

∫
T 2Exp

(
A(x)− |p|2

2T0

)
dp=0, (4.6)

where we recall that T is the quantum transport operator (3.2).

We can write the Drift-Diffusion model in the form of a conservation
law. First, for any function A(x), the particle density n[A] associated with
A is defined by

n[A]=
∫

Exp

(
A(x)− |p|2

2T0

)
dp

(2π–h)d
. (4.7)
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We also introduce �[A] (pressure tensor) according to:

�[A]=
∫
p⊗p Exp

(
A(x)− |p|2

2T0

)
dp

(2π–h)d
, (4.8)

Now, we state:

Proposition 4.2. The Quantum Drift-Diffusion model can be equiv-
alently written:

∂tn+∇ ·J =0 , (4.9)

where the mass flux J is given by

J =−∇ ·�−n∇V , (4.10)

and n and � are nonlinear functionals of A through (4.7) and (4.8).

The Quantum Drift-Diffusion system can be viewed equivalently as
an evolution system for A or for n (through the inversion of the non-local
relation (4.7)). The relations between � and A or n are non-local in space
as well. This model is a conservation equation (4.9) for the local density
n. The density flux J is given in terms of n through the constitutive rela-
tion (4.10). These two equations are formally identical with those involved
in the Classical Drift-Diffusion model(13,15,21). However, the difference is
in the relation between � and n, which is non-local in the quantum case,
and in the fact that � is not a diagonal tensor in general (for the same
reason as in the Energy-Transport case).

The Drift-Diffusion model satisfies an entropy dissipation property.
More precisely, let us define the quantum relative fluid entropy of the sys-
tem as:

S̃(n) =
∫
f0

(
Ln (f0)−1+ h(x,p)

T0

)
dp dx

(2π–h)d

=
∫ (

A(x)−1+ V

T0

)
Exp

(
A(x)− |p|2

2T0

)
dp dx

(2π–h)d

=
∫
n

(
A+ V

T0
−1

)
dx ,

whereA and n are related through (4.7) and f0 =Exp (A−|p|2/2T0). Then, we
have:
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Proposition 4.3. Let A or n solve the Quantum Drift-Diffusion sys-
tem (4.6). Then the quantum fluid entropy satisfies:

d

dt
S̃(n)� 1

T0

∫
n∂tV dx. (4.11)

If the potential V is independent of time, then S̃(n) is a decreasing func-
tion of time:

d

dt
S̃(n)�0. (4.12)

Like for the Energy-Transport model, these results rely on the follow-
ing properties of Q̃, the proof of which is a straightforward extension of
that of Lemma 3.4.

Lemma 4.4. The collision operator Q̃(f ) given by (4.4) has the fol-
lowing properties:

(i) Null space:

Q̃(f )=0 ⇐⇒ ∃A(x, t) such that f =M̃f =Exp

(
A− |p|2

2T0

)
.

(4.13)

(ii) Collisional invariants: For all f , we have:

∫
Q̃(f ) dp=0. (4.14)

(iii) Quantum entropy decay: for all f , we have:

∫
Q̃(f )

(
Lnf + h

T0

)
dx dp�0, (4.15)

with equality if and only if f =M̃f
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We note that, since M̃f is a minimizer of the relative entropy (4.1), we
need to add a term h/T0 to the entropy inequality (4.15). This term is the
reason for the appearence of a right-hand side to the entropy inequality
(4.11), which only vanishes if V is independent of time. In the case where
V is related with n through the Poisson equation:

−�V =n+D, (4.16)

where D is a given time independent background charge density, this term
is a total time derivative:

1
T0

∫
n∂tV dx= 1

2T0

d

dt

∫
|∇(V +V0)|2 dx ,

with �V0 =D. In that case, we recover the perfect decay of the quantity

∫ (
nA−n+ 1

2T0
|∇V |2

)
dx.

5. EXPANSIONS IN POWERS OF −h
5.1. Statement of the Results

The goal of this section is to relate the Quantum Energy-Transport
(QET) and Quantum Drift-Diffusion (QDD) models with their classical
counterparts (the Classical Energy-Transport (CET) and Classical Drift-
Diffusion (CDD) models) through the –h → 0 limit. We also aim at find-
ing the leading order correction to these classical models in an expan-
sion in powers of –h (i.e. terms of order –h2). The so-obtained models
will be called the Quantum Energy-Transport up to order –h2 (QET2) and
Quantum Drift-Diffusion up to order –h2 (QDD2). This approach can be
viewed as an application of the semi-classical method (see e.g. refs. 1, 44,
45, 65) which has been illustrated in the non-linear case in the work by
Grenier(42).

The QDD2 model turns out to be identical with the classical CDD
model corrected by the Bohm potential(39). The Bohm potential usually
appears in the context of Quantum Hydrodynamic models. For the sake
of completeness, let us briefly review this theory.

Starting from the Schrödinger equation

i–h∂tψ=Hψ,
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with H being the Hamiltonian (2.2), we use the Madelung transforma-
tion ψ=√

n exp iS/–h where the density n and the phase S are real-valued
functions of (x, t). Inserting this expression into the Schrödinger equation
and taking real and imaginary parts, we are led to the following system of
equations:

∂tn+∇ · (nu)=0 , (5.1)

∂tS+ 1
2
|∇S|2 +V +VB [n]=0, (5.2)

where

VB [n]=−
–h2

2
1√
n
�(

√
n), (5.3)

is the so-called Bohm potential and u=∇S is the velocity. Eq. (5.1) is the
mass convection equation under the velocity u while (5.2) is the classical
Hamilton–Jacobi equation perturbed by the Bohm potential ṼB , which is
a correction of order –h2.

Taking the gradient of (5.2), we obtain the momentum conservation
equation:

∂tu+u ·∇u+∇(V +VB [n])=0, (5.4)

System (5.1), (5.4) is the system of pressureless Euler equations with,
added to the external potential V , the quantum mechanical contribution
ṼB . However, it should be bore in mind that this system is equivalent
to the single-particle Schrödinger equation, and as such, does not apply
to many-particle systems. To cure this defficiency, one should add other
terms to the momentum equation (5.4) (such as pressure, viscosity, etc.)
and derive an energy balance equation. One finds in the literature several
attemps to realize this programme by introducing some statistical averages
over mixed quantum states(40,30,35–37). However, a major obstacle on this
way is the question of closing the so-obtained chain of statistical equa-
tions. In ref. 25 it has been proposed that the closure Ansatz should use
Quantum Maxwellians as defined in the present work.

However, our aim here is the derivation of diffusion rather than
hydrodynamic models. Diffusion models differ from hydrodynamic ones
in the fact that the velocity (or the flux) is prescribed in terms of the
other state variables of the problem at all times (see e.g. (3.8) or (4.10)),
rather than given through a time-differential relation like in (5.4). The der-
ivation of diffusion models from kinetic ones involves a diffusion scaling
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like (2.17) rather than a hydrodynamic one (where the same power of ε
appears in the scaling of x and t). Therefore, the limits are different. How-
ever, it turns out that the same Bohm potential term appears as the lead-
ing order quantum correction term to the classical Drift-Diffusion model.
This is related with the fact that drift-diffusion models can be derived
from relaxed quantum hydrodynamic systems under a diffusive scaling. We
simply note that our approach gives rise to a discrepancy of a factor 1/3
to the Bohm potential term which would be obtained by such a method
(see (5.7)). So far, there is no physical expanation to this discrepancy.

The Classical Drift-Diffusion system corrected with the Bohm potential
has already been used in the physics or mathematics literature(2,3,17,61,62).
Our approach provides another derivation of this model. As a by-product of
our theory, we also prove that the QDD2 model is entropic. More precisely,
expanding the entropy functional ST in powers of –h2 and retaining terms
up to order –h2, we find an approximate quantum entropy functional, which
is still convex and which decays along solutions of the QDD2 model.

We now turn to the statement of the main results concerning the
QDD2 model.

Theorem 5.1. (i) Let n
–h, J

–h, the solution of the Quantum Drift-
Diffusion (QDD) model (4.9) and (4.10). Then, we formally have:

n
–h =n+O(–h4) , J

–h =J +O(–h4),

where n and J satisfy the Quantum Drift-Diffusion up to order –h2

(QDD2):

∂tn+∇ ·J =0 , (5.5)

J =−T0∇n−n∇(V +VB[n]), (5.6)

and where

VB [n]= 1
3
VB[n]=−

–h2

6
1√
n
�(

√
n), (5.7)

is the rescaled Bohm potential.

(ii) Let the fluid entropy up to order –h2 be defined by:

S̃2[n]=
∫

Rd

n(lnn−1+ V +VB

T0
) dx. (5.8)
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Then, S̃2[n] is twice Gâteaux differentiable and strictly convex and we have
for any solution n of (5.5) and (5.6):

d

dt
S̃2[n] = −

∫
Rd

1
nT0

|T0∇n+n∇(V +VB [n])|2 dx+
∫

Rd

n

T0
∂tV dx (5.9)

�
∫

Rd

n

T0
∂tV dx. (5.10)

In particular, if the potential V is independent of time, then the entropy
S̃2 decays along the solutions of the QDD2 model.

Like at the end of section 4, we remark that, if V is related with n

through the Poisson equation (4.16), the following quantity decays in time:

∫ (
nlnn−n+ 1

2T0
|∇(V +V0)|2 +

–h2

6T0
|∇√

n|2
)
dx.

If we let VB = 0 in (5.5) and (5.6) we recover the classical CDD model.
Of course, in this model, T0 is a constant: the temperature of the system
is the same as the lattice temperature. However, if we expand the pressure
tensor given by (4.8) with respect to –h (Eq. (5.33)) and compute the quan-
tity T

–h =Tr �
–h/(dn

–h), we get

T
–h =T0 −

–h2

12d
� ln n

–h +O(–h4).

Therefore, a generalized temperature for the QDD2 system can be defined

by T =T0 − –h2

12d� ln n and is not identical to the lattice temperature.
We note that the Bohm potential VB which appears in the QDD2

model is divided by a factor 3 compared with that appearing in the Quan-
tum Hydrodynamic model VB (see (5.4)). This factor 3 is not related with
the dimension since the derivation has been performed in arbitrary dimen-
sion d. The physical reason for this discrepancy between the two models
is not yet understood.

We now turn to the QET2 model. It is unfortunate that, in this case,
the –h2 correction from the CET model does not appear so simple. More
precisely, we have:

Theorem 5.2. (i) Let n
–h, W–h, (J n)

–h, (Jw)
–h be the solution of the

Quantum Energy-Transport (QET) model (3.6)–(3.9) with pressure and
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heat-flux tensors �
–h and Q

–h related with (n
–h,W–h) through (3.4), (3.5)

and (3.3). Then, we formally have:

(n
–h,W–h, (J n)

–h, (Jw)
–h)= (n,W, J n, Jw)+O(–h4),

where (n,W, J n, Jw) satisfies the Quantum Energy-Transport up to order
–h2 (QET2). The QET2 model consists of the same balance equations (3.6)
and (3.7) and constitutive relations (3.8) and (3.9) as the QET model.
Only, the relation between the pressure and heat-flux tensors (�,Q) with
(n,W) changes and is now given by:

�rs = δrs nT

+
–h2

12d
nδrs

(
�x ln n+2�x lnT +2∇x lnn·∇x lnT − d+2

2
|∇x lnT |2

)

+
–h2

12
n

(
−∂2

rs ln n−2∂2
rs lnT −∂r ln n∂s lnT −∂r lnT ∂s ln n

+d+2
2

∂r lnT ∂s lnT
)
,

(5.11)

Qrs = d+2
2

δrs nT
2

+
–h2

24d
nT δrs

(
(d+4)�x lnn+ (d+8)�x lnT

+2(d+4)∇x lnn ·∇x lnT + d2 −4d−8
2

|∇x lnT |2
)

(5.12)

+
–h2

24
(d+4) nT

(
− ∂2

rs lnn−3∂2
rs lnT − ∂r lnn∂s lnT

−∂r lnT ∂s lnn+ d

2
∂r lnT ∂s lnT

)
,

where the generalized temperature T is given by the classical relation

T = 2
d

W
n
. (5.13)
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We note that there is apparently no entropic structure to the QET2 model.
The expansion up to order –h2 terms of the entropy S(n,W) defined by
(3.10) does not decay along the trajectories of the QET system, or at least,
we were unable to prove so.

In order to simplify the QET2 model, we investigate the case where
the generalized temperature T varies slowly compared with the density n.
To describe this situation, we introduce a small parameter η� 1 and we
assume that

|∇lnT |
|∇lnn| =O(η).

In the limit η→0, we get the following expressions for the currents:

J n= −∇
(
nT +

–h2

12d
n�lnn

)
−n∇(V +VB [n]) ,

Jw= −∇
(
d+2

2
nT 2 +

–h2

24
d+4
d

nT �lnn

)
− d+4

2
nT ∇VB [n]

−
(
d+2

2
nT +

–h2

12d
n�lnn

)
∇V +

–h2

12
n (∇∇lnn)∇V +

–h2

8
∇�lnn.

In the next sections, we develop the proofs of theorems 5.1 and 5.2. We
first start with some preliminaries.

5.2. Preliminaries

We first prove

Proposition 5.3. Let a(x,p) be a smooth symbol. Then, we have
the following expansion:

Exp a = exp a−
–h2

8
expa

(
∂2
xixj

a ∂2
pipj

a− ∂2
xipj

a ∂2
pixj

a+ 1
3
∂2
xixj

a ∂pi a ∂pj a

−2
3
∂2
xipj

a ∂pi a ∂xj a+ 1
3
∂2
pipj

a ∂xi a ∂xj a

)
+O(–h4), (5.14)

where Einstein’s convention has been used.

First, given two symbols w1(x,p) and w2(x,p), we define the opera-
tion w1 ◦–hw2 as the symbol of their operator product, i.e.

w1 ◦–hw2 =W [W−1(w1)W
−1(w2)] . (5.15)
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As a direct application of pseudo-differential calculus (see refs. 1, 45), In
ref. 65 we have:

Lemma 5.4. The following formal expansion holds (provided that
the symbols wi are infinitely differentiable):

w1 ◦–hw2(x,p)=
∑
α,β

(
i–h
2

)|α|+|β|
(−1)|β|

α!β!
∂αx ∂

β
pw1(x,p) ∂

β
x ∂

α
pw2(x,p)

(5.16)

where α= (α1, . . . , αd)∈N
d is a multi-index, |α|=∑i αi , α! =∏i αi !, ∂

α
x =∏

i ∂
αi
xi and similarly for β.

Thanks to this Lemma, we can write:

w1 ◦–hw2 =
∞∑
n=0

–hnw1 ◦n w2 (5.17)

with

w1 ◦n w2(x,p)=
∑

α,β,|α|+|β|=n

(
i

2

)n
(−1)|β|

α!β!
∂αx ∂

β
pw1(x,p) ∂

β
x ∂

α
pw2(x,p).

(5.18)

In particular, we have:

w1 ◦0w2 =w1w2 , (5.19)

w1 ◦1w2 = i

2
(∇xw1 ·∇pw2 −∇pw1 ·∇xw2) (5.20)

w1 ◦2w2 =−1
8
(∇2

xw1 :∇2
pw2 −2∇x∇pw1 :∇p∇xw2 +∇2

pw1 :∇2
xw2)

(5.21)

where ∇2 denotes the Hessian matrix and : the contracted product of ten-
sors. Thanks to the exchange of α and β in (5.18), it is easy to see that

w1 ◦n w2 = (−1)nw2 ◦n w1

in other words, the operation ◦n is commutative (resp. anticommutative)
when n is even (resp. odd).

With these preliminaries, we can now prove Proposition 5.3:
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Proof of Proposition 5.3. We use the Bloch equation formalism.
More precisely, let F(t)=Exp (ta)=W [exp(tW−1(a))]. Then

dF

dt
= W [W−1(a) exp(tW−1(a))]=W [exp(tW−1(a))W−1(a)]

= 1
2
{W [W−1(a) exp(tW−1(a))]+W [exp(tW−1(a))W−1(a)]}

= 1
2
(a ◦–hF(t)+F(t)◦–h a).

We let F(0)= 1, so that F(1)=W [exp(W−1(a))] = Exp (a), which is the
object to be computed. We expand F =∑∞

n=0
–hnFn.

Then Fn solves:

dFn

dt
= 1

2

n∑
m=0

(a ◦m Fn−m+Fn−m ◦m a)

=
m=n∑

m=0,m even

a ◦m Fn−m,

with initial condition Fn(0)= δn0, where δn0 denotes the Kronecker sym-
bol.

We first have:

dF0

dt
=aF0 , F0(0)=1,

which yields F0 = eat . Then, we have:

dF1

dt
=aF1 , F1(0)=0.

Thus, F1 ≡0. Then:

dF2

dt
= a ◦0F2 +a ◦2 F0

= aF2 − 1
8
(∇2

xa :∇2
pF0 −2∇x∇pa :∇p∇xF0 +∇2

pa :∇2
xF0)

= aF2 − 1
8
(∇2

xa : (t∇2
pa+ t2∇pa∇pa)

−2∇x∇pa : (t∇p∇xa+ t2∇pa∇xa)+∇2
pa : (t∇2

xa+ t2∇xa∇xa))F0
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(where the product of two vectors means a tensor product) together with
F2(0)=0. Integrating with respect to t , we get:

F2(t) = −1
8
(∇2

xa :(
t2

2
∇2
pa+ t3

3
∇pa∇pa)

−2∇x∇pa :(
t2

2
∇p∇xa+ t3

3
∇pa∇xa)+∇2

pa :(
t2

2
∇2
xa+ t3

3
∇xa∇xa))F0.

Finally, we have

dF3

dt
= a ◦0F3 +a ◦2 F1 =aF3, F3(0)=0,

which gives F3 ≡0.
We deduce:

Exp a = ea{1−
–h2

8
[ ∇2

xa : (
1
2
∇2
pa+ 1

3
∇pa∇pa)

−2∇x∇pa : (
1
2
∇p∇xa+ 1

3
∇pa∇xa)+∇2

pa : (
1
2
∇2
xa+ 1

3
∇xa∇xa) ]

+O(–h4)}
= ea{1−

–h2

8
(∇2

xa :∇2
pa−∇x∇pa :∇p∇xa

+1
3
(∇2

xa :∇pa∇pa−2∇x∇pa :∇pa∇xa+∇2
pa :∇xa∇xa))

+O(–h4)} , (5.22)

which is formula (5.14) and ends the proof.

We now specialize (5.14) to a symbol of the form: M(x,p) =
exp(A(x)+C(x)|p|2). Without detailing the computations, we can state:

Lemma 5.5. The following formula holds:

Exp
(
A(x)+C(x)|p|2

)
=M−

–h2

8
MF(2)(A,C)+O(–h4) , (5.23)
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where

F (2)(A,C) = 2C ∂2
iiA+2C |p|2 ∂2

iiC−4pipj ∂iC ∂jC

+4
3
C2pipj ∂

2
ijA+ 4

3
C2pipj |p|2 ∂2

ijC

−8
3
C pipj ∂iC ∂jA− 8

3
C pipj |p|2 ∂iC ∂jC

+2
3
C (∂iA)

2 + 4
3
C |p|2 ∂iA∂iC+ 2

3
C |p|4 (∂iC)2 . (5.24)

For simplicity, ∂2
ijA and ∂2

ijC denote ∂2
xixj

A and ∂2
xixj

C.

At the leading order in –h, we have Exp (A+C|p|2)=M. Let us denote

n0(t, x) =
∫

Rd

M(t, x,p)
dp

(2π–h)d
=
∫

Rd

exp(A+C|p|2) dp

(2π–h)d

=
(
−π
C

)d/2 1
(2π–h)d

eA. (5.25)

Next, integrating (5.23) with respect to p and using the moments of M
computed in Appendix A, we obtain approximations of n, W , �, Q (see
formulae (3.3)–(3.5)) up to terms of order O(–h2) as stated in the following:

Lemma 5.6. We have:

n = n0 −
–h2

6
n0C

(
�A+ 1

2
|∇A|2 − (d−2)

2
∇A · ∇C

C

− (d−1)
2

�C

C
+ (d2 −2d+4)

8
|∇C|2
C2

)
+O(–h4), (5.26)

2W = − d

2C
n0 +

–h2

12
n0

(
(d−1)�A+ d

2
|∇A|2 − d2 −4

2
∇A · ∇C

C

− (d
2 −4)
2

�C

C
+ (d−2)(d+2)2

8
|∇C|2
C2

)
, (5.27)

(5.28)

and, for any pair r, s of indices:
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�rs = − δrs

2C
n0 +

–h2

12
n0 δrs

(
�A+ 1

2
|∇A|2 − d

2
∇A · ∇C

C

− (d+1)
2

�C

C
+ (d2 +2d+4)

8
|∇C|2
C2

)

+
–h2

12
n0

(
−∂2

rsA+ ∂rA ∂sC
C

+ ∂sA ∂rC
C

+ (d+4)
2

∂2
rsC

C
− (d+1)

∂rC ∂sC

C2

)
+O(–h4) , (5.29)

Qrs = (d+2) δrs
8C2

n0 −
–h2

48
n0

C
δrs

(
(d+1)�A+ (d+2)

2
|∇A|2

−d(d+4)
2

∇A · ∇C
C

− d(d+4)
2

�C

C
+ d(d+4)2

8
|∇C|2
C2

)

−
–h2

48
n0

C

(
−(d+4) ∂2

rsA+ (d+4) ∂rA
∂sC

C
+ (d+4) ∂sA

∂rC

C

+ (d+4)(d+6)
2

∂2
rsC

C
− (d+3)(d+4)

∂rC ∂sC

C2

)
+O(–h4) .

(5.30)

We note that (5.27) can be deduced from (5.29) because 2W =Tr�.

After these preliminaries, we can proceed to the proof of Theorem 5.1.

5.3. Proof of Theorem 5.1

(i) In the case of the Quantum Drift-Diffusion, the temperature T0
is specified and we have C=−1/(2T0). Therefore (5.25), (5.26) and (5.29)
become

n0 =
(

2πT0

(2π–h)2

)d/2
eA, (5.31)

n=n0 +
–h2

12
n

T0

(
�A+ 1

2
|∇A|2

)
+O(–h4), (5.32)

�rs = δrs T0 n0 +
–h2

12
n0

(
δrs �A+ 1

2
δrs |∇A|2 − ∂2

rsA

)
+O(–h4)

= δrs T0 n−
–h2

12
n∂2

rsA+O(–h4). (5.33)
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Eq. (5.33) relates � to n and A. But A is related with n through
(5.31) and (5.32). We want to use these relations to eliminate A from
(5.33), or, more precisely, from the term −∇ ·� which appears in the cur-
rent equation (4.10). In the course of this computation, we are allowed to
drop terms of order –h4 or more. Thanks to (5.33), we have

−(∇ ·�)r =−
∑
s

∂s�rs=−T0∂rn+
–h2

12

(∑
s

∂sn∂
2
rsA+n

∑
s

∂3
rssA

)
+O(–h4).

But, from (5.31), we have:

lnn0 =A+ d

2
ln (2πT0)−d ln (2π–h)=A−KT0 ,

thus defining the constant KT0 . Hence we deduce that

∇A= ∇n0

n0
= ∇n

n
+O(–h2)

and consequently, that

−∇ ·�=−T0∇n+
–h2

12
n∇

(
�A+ 1

2
|∇A|2

)
+O(–h4) .

Besides, the identity

�A= �n

n
− |∇n|2

n2
+O(–h2),

implies that

�A+ 1
2
|∇A|2 = �n

n
− 1

2
|∇n|2
n2

+O(–h2)=2
�

√
n√
n

+O(–h2).

Therefore, if we introduce the quantum Bohm potential VB [n] accord-
ing to (5.7), we get

−∇ ·�=−T0 ∇n−n∇VB[n]+O(–h4). (5.34)

Inserting this expansion in (4.10) and omitting the remainder of order
O(–h4), we get (5.6), which ends the proof of part (i) of the theorem.
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(ii) We now recall that the fluid entropy introduced in Section 4 is

S̃[n]=
∫

Rd

n

(
A+ V

T0
−1

)
dx.

Let us expand this expression with respect to –h. We have A= lnn0 +
KT0 . Moreover (5.32) gives

lnn0 = lnn−
–h2

12
1
T0

(
�A+ 1

2
|∇A|2

)
+O(–h4),

from which we deduce:

n

(
A+ V

T
−1

)
=

=n
(

ln n−
–h2

12
1
T0

(
�A+ 1

2
|∇A|2

)
+KT0 + V

T0
−1

)
+O(–h4)

=n
(

ln n+ VB [n]
T0

+KT0 + V

T0
−1

)
+O(–h4).

Consequently we obtain

S̃[n]=
∫

Rd

n

(
lnn−1+ V +VB [n]

T0
+KT0

)
dx+O(–h4).

We note that, since
∫
ndx is a constant, the term

∫
nKT0 dx is a constant

and can therefore be removed from the definition of the entropy. There-
fore, the fluid entropy at the order –h2, S̃2[n] can be defined according to
(5.8).

Furthermore, straightforward computations show that, for non-nega-
tive functions n, S̃2[n] is a twice Gâteaux differentiable convex functional.
Its first and second derivatives evaluated at n in the direction δn are given
by:

DS̃2[n](δn)=
∫

Rd

(
lnn+ V +VB[n]

T0

)
δndx , (5.35)

and

D2S̃2[n](δn, δn)=
∫

Rd

1
n

(
(δn)2 +

–h2

12T0

∣∣∣∣∇δn− δn∇n
n

∣∣∣∣
2
)
dx. (5.36)
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Now, suppose that n is a solution of the QDD2 model (5.5), (5.6).
From (5.35) we deduce that

d

dt
S̃2[n] = DS̃2[n](∂tn)+

∫
Rd

n
∂tV

T0
dx

= 1
T0

∫
Rd

(T0lnn+V +VB [n]) ∂tn dx+
∫

Rd

n
∂tV

T0
dx. (5.37)

Then, using (5.5) and (5.6), we get:

d

dt
S̃2(n) = 1

T0

∫
Rd

(T0 ln n+V +VB [n])∇ · (T0 ∇n+n∇(V +VB [n])) dx

+
∫

Rd

n
∂tV

T0
dx.

Formula (5.9) follows after applying Green’s formula.

5.4. Proof of Theorem 5.2

We want to perform the same kind of manipulations as in the proof
of Theorem 5.1, in order to pass from (5.29), (5.30) to (5.11), (5.13). For
that purpose, we need to eliminate A and C from (5.29), (5.30) in favour
of n and W (or equivalently, in favour of T given by (5.13)).

For convenience, we define T0 = −1/(2C). This quantity T0 is the tem-
perature of the system (not equal to the generalized temperature T defined by
(5.13)). From (5.25), (5.26) and (5.29), we deduce the following relations:

n = n0 +O(h2) , T =T0 +O(h2),
∇C
C

=−∇lnT +O(h2),

A = lnn− d

2
lnT + d

2
ln (2π–h2)+O(h2).

Then by straightforward calculations from (5.26) and (5.27), we obtain

n = n0 +
–h2

12
n

T

(
�lnn+ 1

2
|∇lnn|2 −∇lnn ·∇lnT

−1
2
�lnT − (d−4)

4
|∇lnT |2

)
+O(h4) , (5.38)

nT = n0 T0 +
–h2

12d
n

(
(d−1)�lnn+ d

2
|∇lnn|2 −2∇lnn ·∇lnT

+d−4
2

�lnT − d2 −2d−4
4

|∇ln T |2
)

+O(h4). (5.39)
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Inserting these relations into (5.29) and (5.30) and keeping the leading
order terms, we find (5.11) and (5.13).

6. CONCLUSION

In this paper, we have proposed new Quantum Energy-Transport
and Quantum Drift-Diffusion models. These models are derived from a
diffusion limit of a collisional Wigner equation. We have used simplified
relaxation collision operators but which retain some important quantum
features: quantum entropy decay and relaxation towards quantum equilib-
ria. The resulting models involve fluxes which are related in a non-local
way to the state variables. Nonetheless, these models are consistant with
quantum entropy decay. An expansion in powers of –h allows to simplify
these relations. Keeping the leading order quantum correction in the Drift-
Diffusion model amounts to adding the Bohm potential to the classical
model. We can prove that this model is still entropic. The leading order
quantum correction to the Energy-Transport model is unfortunately not
so simple. Future developments of this work will involve both theoretical
investigations (proof of well-posedness, stability, etc.), and numerical ones.

7. Appendix A

In order to expand the different moments of Exp (A + C|p|2), we
need to compute the moments of M = exp(A+ C|p|2) in terms of n0 =∫

Rd
M

dp

(2π–h)d . In the following formulae, the indices r, s, i, j , k and l

are given and δα1α2...αn is a generalization of the Kronecker symbol for n
indices):

∫
Rd

pi pj M
dp

(2π–h)d
=− n0

2C
δij ,

∫
Rd

pr ps pi pj M
dp

(2π–h)d
= n0

4C2
(δrs δij + δri δsj + δrj δsi),

∫
Rd

pi pj |pk|2M dp

(2π–h)d
= n0

4C2
δij (2δik +1),

∫
Rd

pr ps pi pj |pk|2M dp

(2π–h)d

=− n0

8C3
(δrs δij + δri δsj + δrj δsi

+2δrsk δij +2δrs δijk +2δrik δsj +2δri δsjk
+2δrjk δsi +2δrj δsik),
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∫
Rd

pr ps pi pj |pk|2 |pl |2M dp

(2π–h)d

= n0

16C4
(δrs δij + δri δsj + δrj δsi

+2δrs δij δkl +2δri δsj δkl +2δrj δsi δkl
+2δrsk δij +2δrs δijk +2δrik δsj +2δri δsjk +2δrjk δsi +2δrj δsik
+2δrsl δij +2δrs δij l +2δril δsj +2δri δsj l +2δrj l δsi +2δrj δsil
+4δrsk δij l +4δrsl δijk +4δrik δsj l +4δril δsjk +4δrjk δsil +4δrj l δsik
+8δrskl δij +8δrs δijkl +8δrikl δsj +8δri δsjkl +8δrjkl δsi +8δrj δsikl).

Hence after some summations, for any (r, s, i, j), we deduce

∫
Rd

|p|2M dp

(2π–h)d
=− n0

2C
d,

∫
Rd

pi pj |p|2M dp

(2π–h)d
= n0

4C2
δij (d+2),

∫
Rd

|p|4M dp

(2π–h)d
= n0

4C2
d(d+2),

∫
Rd

pr pspi pj |p|2M dp

(2π–h)d
=− n0

8C3
(δrs δij+δri δsj+δrj δsi)(d+4),

∫
Rd

pr ps |p|4M dp

(2π–h)d
=− n0

8C3
δrs (d+2)(d+4),

∫
Rd

pr pspi pj |p|4M dp

(2π–h)d
= n0

16C4
(δrs δij+δri δsj+δrj δsi)(d+4)(d+6),

∫
Rd

pr ps |p|6M dp

(2π–h)d
= n0

16C4
δrs (d+2)(d+4)(d+6).
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et Appliquées. 76:991–1015 (1997).
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